273 research outputs found

    Polarimetry from the Ground Up

    Full text link
    Ground-based solar polarimetry has made great progress over the last decade. Nevertheless, polarimetry is still an afterthought in most telescope and instrument designs, and most polarimeters are designed based on experience and rules of thumb rather than using more formal systems engineering approaches as is common in standard optical design efforts. Here we present the first steps in creating a set of systems engineering approaches to the design of polarimeters that makes sure that the final telescope-instrument-polarimeter system is more than the sum of its parts.Comment: To appear in proceedings of the Solar Polarization Workshop

    Polarization properties of real aluminum mirrors; I. Influence of the aluminum oxide layer

    Full text link
    In polarimetry it is important to characterize the polarization properties of the instrument itself to disentangle real astrophysical signals from instrumental effects. This article deals with the accurate measurement and modeling of the polarization properties of real aluminum mirrors, as used in astronomical telescopes. Main goals are the characterization of the aluminum oxide layer thickness at different times after evaporation and its influence on the polarization properties of the mirror. The full polarization properties of an aluminum mirror are measured with Mueller matrix ellipsometry at different incidence angles and wavelengths. The best fit of theoretical Mueller matrices to all measurements simultaneously is obtained by taking into account a model of bulk aluminum with a thin aluminum oxide film on top of it. Full Mueller matrix measurements of a mirror are obtained with an absolute accuracy of ~1% after calibration. The determined layer thicknesses indicate logarithmic growth in the first few hours after evaporation, but it remains stable at a value of 4.12+/-0.08 nm on the long term. Although the aluminum oxide layer is established to be thin, it is necessary to consider it to accurately describe the mirror's polarization properties.Comment: accepted for publication in PAS

    Instrumental polarisation at the Nasmyth focus of the E-ELT

    Get PDF
    The ~39-m European Extremely Large Telescope (E-ELT) will be the largest telescope ever built. This makes it particularly suitable for sensitive polarimetric observations, as polarimetry is a photon-starved technique. However, the telescope mirrors may severely limit the polarimetric accuracy of instruments on the Nasmyth platforms by creating instrumental polarisation and/or modifying the polarisation signal of the object. In this paper we characterise the polarisation effects of the two currently considered designs for the E-ELT Nasmyth ports as well as the effect of ageing of the mirrors. By means of the Mueller matrix formalism, we compute the response matrices of each mirror arrangement for a range of zenith angles and wavelengths. We then present two techniques to correct for these effects that require the addition of a modulating device at the polarisation-free intermediate focus that acts either as a switch or as a part of a two-stage modulator. We find that the values of instrumental polarisation, Stokes transmission reduction and cross- talk vary significantly with wavelength, and with pointing, for the lateral Nasmyth case, often exceeding the accuracy requirements for proposed polarimetric instruments. Realistic ageing effects of the mirrors after perfect calibration of these effects may cause polarimetric errors beyond the requirements. We show that the modulation approach with a polarimetric element located in the intermediate focus reduces the instrumental polarisation effects down to tolerable values, or even removes them altogether. The E-ELT will be suitable for sensitive and accurate polarimetry, provided frequent calibrations are carried out, or a dedicated polarimetric element is installed at the intermediate focus.Comment: Accepted for publication in A&

    Observing the Earth as an exoplanet with LOUPE, the Lunar Observatory for Unresolved Polarimetry of Earth

    Full text link
    The detections of small, rocky exoplanets have surged in recent years and will likely continue to do so. To know whether a rocky exoplanet is habitable, we have to characterise its atmosphere and surface. A promising characterisation method for rocky exoplanets is direct detection using spectropolarimetry. This method will be based on single pixel signals, because spatially resolving exoplanets is impossible with current and near-future instruments. Well-tested retrieval algorithms are essential to interpret these single pixel signals in terms of atmospheric composition, cloud and surface coverage. Observations of Earth itself provide the obvious benchmark data for testing such algorithms. The observations should provide signals that are integrated over the Earth's disk, that capture day and night variations, and all phase angles. The Moon is a unique platform from where the Earth can be observed as an exoplanet, undisturbed, all of the time. Here, we present LOUPE, the Lunar Observatory for Unresolved Polarimetry of Earth, a small and robust spectropolarimeter to observe our Earth as an exoplanet.Comment: 14 pages, 3 figures, submitted in special Issue of Planetary and Space Science on Scientific Preparations for Lunar Exploratio

    Citizen science with colour blindness: a case study on the Forel-Ule scale

    Get PDF
    Many citizen science projects depend on colour vision. Examples include classification of soil or water types and biological monitoring. However, up to 1 in 11 participants are colour blind. We simulate the impact of various forms of colour blindness on measurements with the Forel-Ule scale, which is used to measure water colour by eye with a 21-colour scale. Colour blindness decreases the median discriminability between Forel-Ule colours by up to 33% and makes several colour pairs essentially indistinguishable. This reduces the precision and accuracy of citizen science data and the motivation of participants. These issues can be addressed by including uncertainty estimates in data entry forms and discussing colour blindness in training materials. These conclusions and recommendations apply to colour-based citizen science in general, including other classification and monitoring activities. Being inclusive of the colour blind increases both the social and scientific impact of citizen science.Horizon 2020(H2020)776480Environmental Biolog

    Polarization-dependent beam shifts upon metallic reflection in high-contrast imagers and telescopes

    Full text link
    (Abridged) Context. To directly image rocky exoplanets in reflected (polarized) light, future space- and ground-based high-contrast imagers and telescopes aim to reach extreme contrasts at close separations from the star. However, the achievable contrast will be limited by reflection-induced polarization aberrations. While polarization aberrations can be modeled numerically, such computations provide little insight into the full range of effects, their origin and characteristics, and possible ways to mitigate them. Aims. We aim to understand polarization aberrations produced by reflection off flat metallic mirrors at the fundamental level. Methods. We used polarization ray tracing to numerically compute polarization aberrations and interpret the results in terms of the polarization-dependent spatial and angular Goos-H\"anchen and Imbert-Federov shifts of the beam of light as described with closed-form mathematical expressions in the physics literature. Results. We find that all four beam shifts are fully reproduced by polarization ray tracing and study the origin, characteristics, sizes, and directions of the shifts. Of the four beam shifts, only the spatial Goos-H\"anchen and Imbert-Federov shifts are relevant for high-contrast imagers and telescopes because these shifts are visible in the focal plane and create a polarization structure in the PSF that reduces the performance of coronagraphs and the polarimetric speckle suppression close to the star. Conclusions. The beam shifts in an optical system can be mitigated by keeping the f-numbers large and angles of incidence small. Most importantly, mirror coatings should not be optimized for maximum reflectivity, but should be designed to have a retardance close to 180{\deg}. The insights from our study can be applied to improve the performance of current and future high-contrast imagers, especially those in space and on the ELTs.Comment: 19 pages, 13 figures, 1 table, accepted for publication in Astronomy & Astrophysics, forthcoming articl
    • …
    corecore